[1]
|
中华预防医学会微生态学分会, 北京伍连德公益基金会微生态健康管理专家委员会. 后生元的研究及应用现状专家共识[J]. 中国微生态学杂志, 2023, 35(2): 218-222.
Google Scholar
Chinese Society of Preventive Medicine Microecology, Beijing Wu Liande Public Welfare Foundation microecological health management Expert Committee. Scientific consensus on research and application status of postbiotic[J]. Chin J Microecol, 2023, 35(2): 218-222. (in Chinese)
Google Scholar
|
[2]
|
Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol. 2021, 18(9): 649-667.
Google Scholar
|
[3]
|
中国生物发酵产业协会. T/CBFIA09001-03 益生菌制品乳酸菌类后生元[S]. 北京: 中国轻工业出版社, 2023.
Google Scholar
China Biotech Fermentation Industry Association. T/CBFIA09001-03 Probiotic products lactic acid bacteria postbiotics[S]. Beijing: China Light Industry Press, 2023. (in Chinese)
Google Scholar
|
[4]
|
李锴骁, 李帅彪, 杨婉秋, 等. 纳豆芽孢杆菌的研究进展[J]. 基因组学与应用生物学, 2021, 40(S3): 3131-3139.
Google Scholar
LI Kaixiao, LI Shuaibiao, YANG Wanqiu, et al. Research progress of Bacillus natto[J]. Genom Appl Biol, 2021, 40(S3): 3131-3139. (in Chinese)
Google Scholar
|
[5]
|
Shen X, Liu LP, Peek RM, et al. Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term he alth outcomes[J]. Mucosal Immunol, 2018, 11(5): 1316-1328.
Google Scholar
|
[6]
|
Vinderola G, Sanders ME, Salminen S. The concept of postbiotics[J]. Foods, 2022, 11(8): 1077.
Google Scholar
|
[7]
|
Scott E, De Paepe K, Van de Wiele T. Postbiotics and their health modulatory biomolecules[J]. Biomolecules, 2022, 12(11): 1640.
Google Scholar
|
[8]
|
Molaee Parvarei M, Fazeli MR, Mortazavian AM, et al. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt[J]. Food Res Int, 2021, 140: 110030.
Google Scholar
|
[9]
|
齐盟, 辛雅明, 白绥明, 等. 枯草芽孢杆菌肽聚糖对绵羊瘤胃上皮细胞β-防御素-1(SBD-1)表达的影响[J]. 中国兽医杂志, 2023, 59(11): 52-58.
Google Scholar
QI Meng, XIN Yaming, BAI Suiming, et al. Effects of Bacillus subtilis peptidoglycan on expression of β-defensin-1 (SBD-1) in ovine rumen epithelial cells[J]. Chin J Vet Med, 2023, 59(11): 52-58. (in Chinese)
Google Scholar
|
[10]
|
黄晓宇, 韩瑨, 高雅茹, 等. 植物乳杆菌胞外多糖的研究进展[J/OL]. 食品与发酵工业, 2023 1-10[2024-03-03].https://doi.org/10.13995/j.cnki.11-1802/ts.037076.
Google Scholar
HUANG Xiaoyu, HAN Jin, GAO Yaru, et al. Research progress of exopolysaccharide from Lactiplantibacillus plantarum[J/OL]. Food Ferm Ind, 2023: 1-10[2024-03-03]. https://doi.org/10.13995/j.cnki.11-1802/ts.037076. (in Chinese)
Google Scholar
|
[11]
|
邓雪婷, 高蓉蓉, 季翠, 等. 芽孢杆菌及其胞外多糖对空心菜和茼蒿Cd吸收及土壤团聚体的影响[J]. 农业环境科学学报, 2024(1): 60-67.
Google Scholar
DENG Xueting, GAO Rongrong, JI Cui, et al. Effects of Bacillus and its exopolysaccharide on water spinach and crown daisy Cd uptake and soil aggregates[J]. J Agro-Environ Sci, 2024(1): 60-67. (in Chinese)
Google Scholar
|
[12]
|
李静, 王梦静, 陈杰鹏, 等. 新型纳豆激酶-γ-聚谷氨酸复合物注射液的制备和毒性评价[J]. 中国现代应用药学, 2020, 37(2): 180-186.
Google Scholar
LI Jing, WANG Mengjing, CHEN Jiepeng, et al. Preparation and toxicity evaluation of a novel nattokinase-γ-polyglutamic acid complex injection[J]. Chin J Mod Appl Pharm, 2020, 37(2): 180-186. (in Chinese)
Google Scholar
|
[13]
|
Chen HJ, Chen JP, Zhang FP, et al. Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: a clinical study with 1, 062 participants[J]. Front Cardiovasc Med, 2022, 9: 964977.
Google Scholar
|
[14]
|
Tanikawa T, Kiba Y, Yu J, et al. Degradative effect of nattokinase on spike protein of SARS-CoV-2[J]. Molecules, 2022, 27(17): 5405.
Google Scholar
|
[15]
|
杨学颖, 赵培佐, 陈杰鹏, 等. 维生素K2对心血管疾病作用的研究进展[J]. 中国微生态学杂志, 2019, 31(9): 1110-1116.
Google Scholar
YANG Xueying, ZHAO Peizuo, CHEN Jiepeng, et al. Progress in research on the effect of vitamin K2 on cardiovascular diseases[J]. Chin J Microecol, 2019, 31(9): 1110-1116. (in Chinese)
Google Scholar
|
[16]
|
周建烈, 陈杰鹏, 段丽丽, 等. 维生素K2 (MK-7)防治骨质疏松的作用机制研究进展[J]. 中国骨质疏松杂志, 2019, 25(4): 539-545.
Google Scholar
ZHOU Jianlie, CHEN Jiepeng, DUAN Lili, et al. Update on the mechanism of vitamin K2 (MK-7) in preventing and treating osteoporosis[J]. Chin J Osteoporos, 2019, 25(4): 539-545. (in Chinese)
Google Scholar
|
[17]
|
范修霖. 戊二醛固定化脂肪酶催化植物油脂水解合成脂肪酸的研究[D]. 无锡: 江南大学, 2023.
Google Scholar
FAN Xiulin. Hydrolysis of vegetable oil to produce fatty acids catalyzed by glutaraldehyde-immobilized lipase[D]. Wuxi: Jiangnan University, 2023. (in Chinese)
Google Scholar
|
[18]
|
Bersaneti GT, Pan NC, Baldo C, et al. Co-production of fructooligosaccharides and levan by levansucrase from Bacillus subtilis natto with potential application in the food industry[J]. Appl Biochem Biotechnol, 2018, 184(3): 838-851.
Google Scholar
|
[19]
|
石广举, 孙力军, 王雅玲, 等. 纳豆芽孢杆菌NT-6抗菌脂肽对凡纳滨对虾生长性能及非特异性免疫指标的影响[J]. 广东农业科学, 2014, 41(22): 99-103.
Google Scholar
SHI Guangju, SUN Lijun, WANG Yaling, et al. Effects of antibacterial lipopeptides produced by Bacillus subtilis NT-6 in solid-state fermentation on growth performance and non-specific immunity of Litopenaeus vannamei[J]. Guangdong Agric Sci, 2014, 41(22): 99-103. (in Chinese)
Google Scholar
|
[20]
|
刘常金, 郑焕兰, 姜川, 等. 纳豆芽孢杆菌液体发酵生产γ-聚谷氨酸[J]. 现代食品科技, 2009, 25(8): 935-939.
Google Scholar
LIU Changjin, ZHENG Huanlan, JIANG Chuan, et al. Production of γ-poly glutamic acid via liquid fermentation by Bacillus subtilis natto[J]. Mod Food Sci Technol, 2009, 25(8): 935-939. (in Chinese)
Google Scholar
|
[21]
|
Liu ZH, He Y, Ma X. Preparation, Characterization and drug delivery research of γ-polyglutamic acid nanoparticles: a review[J]. Curr Drug Deliv, 2023. DOI: 10.2174/1567201820666230102140450.
Google Scholar
|
[22]
|
Li J, Zhang J, Xue Q, et al. Pyrroloquinoline quinone alleviates natural aging-related osteoporosis via a novel MCM3-Keap1-Nrf2 axis-mediated stress response and Fbn1 upregulation[J]. Aging Cell, 2023, 22(9): e13912.
Google Scholar
|
[23]
|
王晓萱, 陈兆国, 龙淼, 等. 纳豆菌的功能及其应用研究进展[J/OL]. 中国动物传染病学报: 1-7[2024-03-03]. https:// doi.org/ 10.19958/ j.cnki.cn31-2031/ s.20220424.006.
Google Scholar
WANG Xiaoxuan, CHEN Zhaoguo, LONG Miao, et al. Research progress on the function and application of Bacillus natto[J/OL]. Chin J Anim Infect Dis: 1-7[2024-03-03]. https:// doi.org/ 10.19958/ j.cnki.cn31-2031/ s.20220424.006. (in Chinese)
Google Scholar
|
[24]
|
Ruiz Sella SRB, Bueno T, de Oliveira AAB, et al. Bacillus subtilis natto as a potential probiotic in animal nutrition[J]. Crit Rev Biotechnol, 2021, 41(3): 355-369.
Google Scholar
|
[25]
|
Azimirad M, Alebouyeh M, Naji T. Inhibition of lipopolysaccharide-induced interleukin 8 in human adenocarcinoma cell line HT-29 by spore probiotics: B. coagulans and B. subtilis (natto)[J]. Probiotics Antimicrob Proteins, 2017, 9(1): 56-63.
Google Scholar
|
[26]
|
李静, 宋艳志, 王梦静, 等. 纳豆激酶与尿激酶的对比性研究[J]. 中国药剂学杂志(网络版), 2016, 14(4): 125-134.
Google Scholar
LI Jing, SONG Yanzhi, WANG Mengjing, et al. The comparative study of nattokinase and urokinase[J]. Chin J Pharm (Online Ed), 2016, 14(4): 125-134. (in Chinese)
Google Scholar
|
[27]
|
Francesco DP. Fibrinolytic compositions comprising bromelain and nattokinase for the prevention and treatment of phlebothrombotic states: AU2013349898A1[P]. 2015-06-11.
Google Scholar
|
[28]
|
聂冰秀, 顾悦, 张承泰, 等. 纳豆的保健功效及应用前景[J]. 粮食加工, 2021, 46(1): 69-72.
Google Scholar
NIE Bingxiu, GU Yue, ZHANG Chengtai, et al. Healthcare functions and applications prospect of natto[J]. Grain Process, 2021, 46(1): 69-72. (in Chinese)
Google Scholar
|
[29]
|
刘银辉, 李明, 段丽丽, 等. 肠道菌群失调与高尿酸血症关系的研究进展[J]. 中国微生态学杂志, 2023, 35(2): 229-233.
Google Scholar
LIU Yinhui, LI Ming, DUAN Lili, et al. Dysbiosis of gut microbiota in hyperuricemia: research progress[J]. Chin J Microecol, 2023, 35(2): 229-233. (in Chinese)
Google Scholar
|
[30]
|
孟丽娜. 螺旋藻固态发酵制备纳豆激酶及其发酵产物中降尿酸肽的研究[D]. 北京: 北京林业大学, 2020.
Google Scholar
MENG Lina. Solid-state fermentation of spirulina to produce nattokinase and anti-hyperuricemic peptides in its fermentation products[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
Google Scholar
|
[31]
|
Kitagawa M, Shiraishi T, Yamamoto S, et al. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains[J]. AMB Express, 2017, 7(1): 127.
Google Scholar
|
[32]
|
高娟娟, 贾丽艳, 畅盼盼, 等. 枯草芽孢杆菌细菌素A32的抑菌机理研究[J]. 中国食品学报, 2021, 21(10): 56-64.
Google Scholar
GAO Juanjuan, JIA Liyan, CHANG Panpan, et al. Studies on the inhibition mechanism of bacteriocin A32 producing by Bacillus subtilis[J]. J Chin Inst Food Sci Technol, 2021, 21(10): 56-64. (in Chinese)
Google Scholar
|