Advanced Search

ZHOU Zhimo, LIU Meixun, JIA Wen, et al. Health-promoting effects of postbiotic Bacillus subtilis subsp. natto[J]. Chinese Journal of Microecology, 2024, 36(3): 368-372. doi: 10.13381/j.cnki.cjm.202403020
Citation: ZHOU Zhimo, LIU Meixun, JIA Wen, et al. Health-promoting effects of postbiotic Bacillus subtilis subsp. natto[J]. Chinese Journal of Microecology, 2024, 36(3): 368-372. doi: 10.13381/j.cnki.cjm.202403020

Health-promoting effects of postbiotic Bacillus subtilis subsp. natto

More Information
  • Bacillus subtilis subsp. natto is a probiotic with a long history of consumption, and its safety and health promoting effects have been well proven in both human and clinical trials. Special cultivation and membrane filtration techniques can be used to produce a new type of postbiotic using Bacillus subtilis subsp. natto which contains various unique postbiotic components, such as bacterial wall, extracellular polysaccharides, nattokinase, vitamin K2, γ-polyglutamic acid and other epigenetic components. These postbiotic components can endow Bacillus subtilis subsp. natto the potential of probiotics with much more unique health promoting functions, such as regulating bowel movements and promoting digestion, preventing and dissolving blood clots, lowering blood pressure, promoting bone calcium absorption, reducing uric acid and inhibiting bacteria and inflammation. This article discusses the definition, preparation methods, functional components and health promoting effects of the postbiotic Bacillus subtilis subsp. natto.
  • 加载中
  • [1] 中华预防医学会微生态学分会, 北京伍连德公益基金会微生态健康管理专家委员会. 后生元的研究及应用现状专家共识[J]. 中国微生态学杂志, 2023, 35(2): 218-222.

    Google Scholar

    Chinese Society of Preventive Medicine Microecology, Beijing Wu Liande Public Welfare Foundation microecological health management Expert Committee. Scientific consensus on research and application status of postbiotic[J]. Chin J Microecol, 2023, 35(2): 218-222. (in Chinese)

    Google Scholar

    [2] Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol. 2021, 18(9): 649-667.

    Google Scholar

    [3] 中国生物发酵产业协会. T/CBFIA09001-03 益生菌制品乳酸菌类后生元[S]. 北京: 中国轻工业出版社, 2023.

    Google Scholar

    China Biotech Fermentation Industry Association. T/CBFIA09001-03 Probiotic products lactic acid bacteria postbiotics[S]. Beijing: China Light Industry Press, 2023. (in Chinese)

    Google Scholar

    [4] 李锴骁, 李帅彪, 杨婉秋, 等. 纳豆芽孢杆菌的研究进展[J]. 基因组学与应用生物学, 2021, 40(S3): 3131-3139.

    Google Scholar

    LI Kaixiao, LI Shuaibiao, YANG Wanqiu, et al. Research progress of Bacillus natto[J]. Genom Appl Biol, 2021, 40(S3): 3131-3139. (in Chinese)

    Google Scholar

    [5] Shen X, Liu LP, Peek RM, et al. Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term he alth outcomes[J]. Mucosal Immunol, 2018, 11(5): 1316-1328.

    Google Scholar

    [6] Vinderola G, Sanders ME, Salminen S. The concept of postbiotics[J]. Foods, 2022, 11(8): 1077.

    Google Scholar

    [7] Scott E, De Paepe K, Van de Wiele T. Postbiotics and their health modulatory biomolecules[J]. Biomolecules, 2022, 12(11): 1640.

    Google Scholar

    [8] Molaee Parvarei M, Fazeli MR, Mortazavian AM, et al. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt[J]. Food Res Int, 2021, 140: 110030.

    Google Scholar

    [9] 齐盟, 辛雅明, 白绥明, 等. 枯草芽孢杆菌肽聚糖对绵羊瘤胃上皮细胞β-防御素-1(SBD-1)表达的影响[J]. 中国兽医杂志, 2023, 59(11): 52-58.

    Google Scholar

    QI Meng, XIN Yaming, BAI Suiming, et al. Effects of Bacillus subtilis peptidoglycan on expression of β-defensin-1 (SBD-1) in ovine rumen epithelial cells[J]. Chin J Vet Med, 2023, 59(11): 52-58. (in Chinese)

    Google Scholar

    [10] 黄晓宇, 韩瑨, 高雅茹, 等. 植物乳杆菌胞外多糖的研究进展[J/OL]. 食品与发酵工业, 2023 1-10[2024-03-03].https://doi.org/10.13995/j.cnki.11-1802/ts.037076.

    Google Scholar

    HUANG Xiaoyu, HAN Jin, GAO Yaru, et al. Research progress of exopolysaccharide from Lactiplantibacillus plantarum[J/OL]. Food Ferm Ind, 2023: 1-10[2024-03-03]. https://doi.org/10.13995/j.cnki.11-1802/ts.037076. (in Chinese)

    Google Scholar

    [11] 邓雪婷, 高蓉蓉, 季翠, 等. 芽孢杆菌及其胞外多糖对空心菜和茼蒿Cd吸收及土壤团聚体的影响[J]. 农业环境科学学报, 2024(1): 60-67.

    Google Scholar

    DENG Xueting, GAO Rongrong, JI Cui, et al. Effects of Bacillus and its exopolysaccharide on water spinach and crown daisy Cd uptake and soil aggregates[J]. J Agro-Environ Sci, 2024(1): 60-67. (in Chinese)

    Google Scholar

    [12] 李静, 王梦静, 陈杰鹏, 等. 新型纳豆激酶-γ-聚谷氨酸复合物注射液的制备和毒性评价[J]. 中国现代应用药学, 2020, 37(2): 180-186.

    Google Scholar

    LI Jing, WANG Mengjing, CHEN Jiepeng, et al. Preparation and toxicity evaluation of a novel nattokinase-γ-polyglutamic acid complex injection[J]. Chin J Mod Appl Pharm, 2020, 37(2): 180-186. (in Chinese)

    Google Scholar

    [13] Chen HJ, Chen JP, Zhang FP, et al. Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: a clinical study with 1, 062 participants[J]. Front Cardiovasc Med, 2022, 9: 964977.

    Google Scholar

    [14] Tanikawa T, Kiba Y, Yu J, et al. Degradative effect of nattokinase on spike protein of SARS-CoV-2[J]. Molecules, 2022, 27(17): 5405.

    Google Scholar

    [15] 杨学颖, 赵培佐, 陈杰鹏, 等. 维生素K2对心血管疾病作用的研究进展[J]. 中国微生态学杂志, 2019, 31(9): 1110-1116.

    Google Scholar

    YANG Xueying, ZHAO Peizuo, CHEN Jiepeng, et al. Progress in research on the effect of vitamin K2 on cardiovascular diseases[J]. Chin J Microecol, 2019, 31(9): 1110-1116. (in Chinese)

    Google Scholar

    [16] 周建烈, 陈杰鹏, 段丽丽, 等. 维生素K2 (MK-7)防治骨质疏松的作用机制研究进展[J]. 中国骨质疏松杂志, 2019, 25(4): 539-545.

    Google Scholar

    ZHOU Jianlie, CHEN Jiepeng, DUAN Lili, et al. Update on the mechanism of vitamin K2 (MK-7) in preventing and treating osteoporosis[J]. Chin J Osteoporos, 2019, 25(4): 539-545. (in Chinese)

    Google Scholar

    [17] 范修霖. 戊二醛固定化脂肪酶催化植物油脂水解合成脂肪酸的研究[D]. 无锡: 江南大学, 2023.

    Google Scholar

    FAN Xiulin. Hydrolysis of vegetable oil to produce fatty acids catalyzed by glutaraldehyde-immobilized lipase[D]. Wuxi: Jiangnan University, 2023. (in Chinese)

    Google Scholar

    [18] Bersaneti GT, Pan NC, Baldo C, et al. Co-production of fructooligosaccharides and levan by levansucrase from Bacillus subtilis natto with potential application in the food industry[J]. Appl Biochem Biotechnol, 2018, 184(3): 838-851.

    Google Scholar

    [19] 石广举, 孙力军, 王雅玲, 等. 纳豆芽孢杆菌NT-6抗菌脂肽对凡纳滨对虾生长性能及非特异性免疫指标的影响[J]. 广东农业科学, 2014, 41(22): 99-103.

    Google Scholar

    SHI Guangju, SUN Lijun, WANG Yaling, et al. Effects of antibacterial lipopeptides produced by Bacillus subtilis NT-6 in solid-state fermentation on growth performance and non-specific immunity of Litopenaeus vannamei[J]. Guangdong Agric Sci, 2014, 41(22): 99-103. (in Chinese)

    Google Scholar

    [20] 刘常金, 郑焕兰, 姜川, 等. 纳豆芽孢杆菌液体发酵生产γ-聚谷氨酸[J]. 现代食品科技, 2009, 25(8): 935-939.

    Google Scholar

    LIU Changjin, ZHENG Huanlan, JIANG Chuan, et al. Production of γ-poly glutamic acid via liquid fermentation by Bacillus subtilis natto[J]. Mod Food Sci Technol, 2009, 25(8): 935-939. (in Chinese)

    Google Scholar

    [21] Liu ZH, He Y, Ma X. Preparation, Characterization and drug delivery research of γ-polyglutamic acid nanoparticles: a review[J]. Curr Drug Deliv, 2023. DOI: 10.2174/1567201820666230102140450.

    Google Scholar

    [22] Li J, Zhang J, Xue Q, et al. Pyrroloquinoline quinone alleviates natural aging-related osteoporosis via a novel MCM3-Keap1-Nrf2 axis-mediated stress response and Fbn1 upregulation[J]. Aging Cell, 2023, 22(9): e13912.

    Google Scholar

    [23] 王晓萱, 陈兆国, 龙淼, 等. 纳豆菌的功能及其应用研究进展[J/OL]. 中国动物传染病学报: 1-7[2024-03-03]. https:// doi.org/ 10.19958/ j.cnki.cn31-2031/ s.20220424.006.

    Google Scholar

    WANG Xiaoxuan, CHEN Zhaoguo, LONG Miao, et al. Research progress on the function and application of Bacillus natto[J/OL]. Chin J Anim Infect Dis: 1-7[2024-03-03]. https:// doi.org/ 10.19958/ j.cnki.cn31-2031/ s.20220424.006. (in Chinese)

    Google Scholar

    [24] Ruiz Sella SRB, Bueno T, de Oliveira AAB, et al. Bacillus subtilis natto as a potential probiotic in animal nutrition[J]. Crit Rev Biotechnol, 2021, 41(3): 355-369.

    Google Scholar

    [25] Azimirad M, Alebouyeh M, Naji T. Inhibition of lipopolysaccharide-induced interleukin 8 in human adenocarcinoma cell line HT-29 by spore probiotics: B. coagulans and B. subtilis (natto)[J]. Probiotics Antimicrob Proteins, 2017, 9(1): 56-63.

    Google Scholar

    [26] 李静, 宋艳志, 王梦静, 等. 纳豆激酶与尿激酶的对比性研究[J]. 中国药剂学杂志(网络版), 2016, 14(4): 125-134.

    Google Scholar

    LI Jing, SONG Yanzhi, WANG Mengjing, et al. The comparative study of nattokinase and urokinase[J]. Chin J Pharm (Online Ed), 2016, 14(4): 125-134. (in Chinese)

    Google Scholar

    [27] Francesco DP. Fibrinolytic compositions comprising bromelain and nattokinase for the prevention and treatment of phlebothrombotic states: AU2013349898A1[P]. 2015-06-11.

    Google Scholar

    [28] 聂冰秀, 顾悦, 张承泰, 等. 纳豆的保健功效及应用前景[J]. 粮食加工, 2021, 46(1): 69-72.

    Google Scholar

    NIE Bingxiu, GU Yue, ZHANG Chengtai, et al. Healthcare functions and applications prospect of natto[J]. Grain Process, 2021, 46(1): 69-72. (in Chinese)

    Google Scholar

    [29] 刘银辉, 李明, 段丽丽, 等. 肠道菌群失调与高尿酸血症关系的研究进展[J]. 中国微生态学杂志, 2023, 35(2): 229-233.

    Google Scholar

    LIU Yinhui, LI Ming, DUAN Lili, et al. Dysbiosis of gut microbiota in hyperuricemia: research progress[J]. Chin J Microecol, 2023, 35(2): 229-233. (in Chinese)

    Google Scholar

    [30] 孟丽娜. 螺旋藻固态发酵制备纳豆激酶及其发酵产物中降尿酸肽的研究[D]. 北京: 北京林业大学, 2020.

    Google Scholar

    MENG Lina. Solid-state fermentation of spirulina to produce nattokinase and anti-hyperuricemic peptides in its fermentation products[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)

    Google Scholar

    [31] Kitagawa M, Shiraishi T, Yamamoto S, et al. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains[J]. AMB Express, 2017, 7(1): 127.

    Google Scholar

    [32] 高娟娟, 贾丽艳, 畅盼盼, 等. 枯草芽孢杆菌细菌素A32的抑菌机理研究[J]. 中国食品学报, 2021, 21(10): 56-64.

    Google Scholar

    GAO Juanjuan, JIA Liyan, CHANG Panpan, et al. Studies on the inhibition mechanism of bacteriocin A32 producing by Bacillus subtilis[J]. J Chin Inst Food Sci Technol, 2021, 21(10): 56-64. (in Chinese)

    Google Scholar

Article Metrics

Article views(896) PDF downloads(1046) Cited by(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint