The role and mechanism of intestinal flora in non-steroidal anti-inflammatory drug enteropathy

QIAN Yan-na, SUN Ling-ru, ZHANG Shuo

*The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China

Corresponding author: ZHANG Shuo. E-mail: zhangshuotcm@163.com

Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used antipyretic, analgesic and anti-inflammatory drugs worldwide, but there are obvious gastrointestinal side effects, which can lead to gastrointestinal ulcer, bleeding, and perforation, etc. The incidence of NSAIDs caused intestinal diseases is high, and the mechanism is still unknown. Among them, intestinal mucosal barrier injury plays an important role in the pathogenesis of NSAIDs enteropathy. Recent studies have shown that intestinal flora and NSAIDs interact in the body, and intestinal microbes play an important role in the maintenance of intestinal mucosal barrier function. The imbalance of intestinal flora has gradually become one of the pathophysiological mechanisms of NSAIDs enteropathy. This paper summarized the close correlation between intestinal flora and drug action of NSAIDs, and expounded the role and mechanism of intestinal flora in the occurrence and development of NSAIDs enteropathy from the aspect of damage and repair of intestinal mucosal barrier, so as to provide a theoretical basis for the treatment of NSAIDs enteropathy with intestinal flora as the target.

Keywords: Intestinal flora; Nonsteroidal anti-inflammatory drug enteropathy; Intestinal mucosal barrier; Intestinal mucosal injury

非甾体抗炎药（non-steroidal anti-inflammatory drugs, NSAIDs）是一类广泛应用于抗炎、镇痛和解热等方面的非糖皮质激素类药物。但NSAIDs可导致胃肠道、肝脏及肾脏损害，对血液系统和中枢神经系统也有不良影响，其中最常见的是胃肠道损伤。如溃疡、出血和穿孔等[1]。近年来，随着胶囊内镜和双气囊内镜在临床上的普及应用，临床医生发现除了上消化道损伤，NSAIDs也会引起小肠损伤，即NSAIDs肠病（NSAIDs enteropathy）的发生，主要表现为肠道充血、糜烂和溃疡等。目前NSAIDs肠病发病率较高，并且严重的并发症，已逐渐成为人们关注的焦点[2]，但其发病机制尚不明确。现已知肠黏膜屏障损伤和肠稳态的破坏是其中重要的一环。肠道细菌是人体肠道内动态定植的种类最多、数量最庞大的微生物组，在维持肠黏膜屏障功能和
肠道微生态平衡中发挥着重要作用。多项研究证明，肠道菌群失调与消化系统疾病的发生发展密切相关，也是 NSAIDs 肠病发病机制中的一个重要因素。故本文将结合近年来的研究，阐明肠道菌群与 NSAIDs 的相互作用，并从肠黏膜屏障的损伤与修复等方面阐述肠道菌群在 NSAIDs 肠病中的作用及机制，最后探讨基于调节肠道菌群以预防和治疗 NSAIDs 肠病的临床应用前景。

1 NSAIDs 肠病的发病机制

NSAIDs 对小肠的损伤机制目前尚未阐明，现有的文献分可为以下 5 个方面。

1.1 抑制前列腺素的合成 NSAIDs 可抑制环氧合酶（COX），包括 COX-1 与 COX-2，从而抑制前列腺素（PG）的合成。PG 可调节胃肠道血液流动并促进黏液分泌，对维持肠黏膜稳态具有重要作用，PG 缺乏则易导致肠黏膜屏障损伤。抑制 PG 合成是 NSAIDs 对上消化道和肠道损伤的共同机制。

1.2 钙质减少和线粒体损伤 钙质是胃肠道完整性的重要组分，具有水化性，能限制肠腔内的细菌和胆汁上侵黏膜。而 NSAIDs 可疏松黏液层的疏水屏障，使肠黏膜直接暴露于肠内容物。此外，NSAIDs 可直接破会黏膜上皮细胞的磷脂层，侵入到线粒体膜，线粒体通透性转换孔（PTP）被打开，使氧化磷酸化解耦联，引起 ATP 生成障碍、钙离子外流和自由基产生，破会细胞直接使黏膜通透性增加，从而导致肠损伤。

1.3 免疫炎症反应 当小肠黏膜通透性增加时，肠道细菌和胆汁酸等侵入黏膜深层，其危险信号被模式识别受体如 Toll 样受体（Toll-like receptors, TLRs）和 NOD 样受体（NOD-like receptors, NLRs）识别，产生促炎因子和趋化因子，引发免疫反应，进一步破会肠黏膜。另有研究表明，NSAIDs 对肠道自噬的抑制可能通过破会黏膜屏障的完整性来阻碍入侵微生物的清除，加重炎症反应，从而加重肠道损伤的严重程度。

1.4 肠道菌群失调 不少研究证明肠道菌群在 NSAIDs 肠病发病中扮演了主要角色。研究发现，NSAIDs 肠病患者的粪便菌群多样性减少，致病菌增多而有益菌相对减少。且致病菌的增加与 NSAIDs 肠病的发病和严重程度密切相关。如肠道被革兰阳性菌定植时，NSAIDs 引起小肠损伤更为严重。此外，质子泵抑制剂（proton pump inhibitor, PPI）在预防和治疗 NSAIDs 引起上消化道损伤的同时，加重了小肠的酶性出血和溃疡，这与 PPI 作为慢性抑酸剂诱导肠道革兰阴性菌的增加有关。但与肠道菌群相关的机制应不仅限于革兰阴性菌，与肠损伤密切相关的其他类群菌仍需进一步研究。

1.5 肠肝循环 药物的肠肝循环导致肠黏膜长时间反复暴露于该化合物及其代谢产物，从而导致并加重肠黏膜屏障损伤。NSAIDs 肠病的发病机制之一。其中，胆汁在 NSAIDs 小肠损伤的机制中起着重要作用，NSAIDs 在肝内代谢并与胆汁酸结合，再次进入小肠后，通过竞争性抑制性磷脂酰胆碱分子或在肠道细菌酶的裂解作用下产生肠毒性物质，进一步加重肠损伤。

综上，NSAIDs 可通过抑制 COX 从而抑制 PG 的合成，使肠黏膜微血管血流动力减弱，黏液分泌减少，同时可以直接破会黏液层和上皮细胞磷脂层，导致线粒体的损伤和细胞连接的破坏，使肠黏膜机械屏障受损，引发菌群移位和免疫炎症反应。肠道菌群的紊乱和移位进一步加重肠屏障的损伤，且 NSAIDs 在药物的肠肝循环作用下，延长了其在小肠的代谢过程，并在肠道细菌酶的作用下产生肠毒性物质，最终导致肠黏膜的严重损伤。

2 NSAIDs 与肠道菌群的相互作用


与此同时，肠道菌群也会直接或间接影响 NSAIDs
的吸收和代谢，药物的肝肠循环可增强药物代谢和延长排泄，NSAIDs 在肝内葡萄醛酸化并与胆汁酸结合，再次进入小肠，被肠道中的细菌 β-葡萄糖醛酸酶裂解，产生尿苷，增强肠毒性[13]。Jourova 等[14]研究了肠道微生物对塞丁美酮的影响，发现塞丁美酮在细菌作用下产生非活性代谢物，并减少其向活性代谢物 6-MNA 的转化，这一现象在厌氧条件下更活跃，且在肠道微生物被抑制和缺乏的小鼠中，AUC、Cmax 和 t1/2 等药代动力学参数均有明显增加的趋势。研究 NSAIDs 与肠道菌群的相互作用机制，有助于探讨 NSAIDs 在诱导肠损伤过程中的具体机制，也能为以后的药物研究提供基础。

3 肠道菌群在 NSAIDs 肠病中的肠屏障相关机制

肠道菌群失调是引发 NSAIDs 肠病的主要机制之一，且 NSAIDs 与肠道菌群之间存在密切的相互作用机制，因此肠道菌群在 NSAIDs 诱导的肠损伤中具有关键作用，但两者间的机制尚未被具体阐明。人体拥有一个完整的、动态的肠道菌群，依靠多种细胞和分子机制维持，包括机械屏障、免疫屏障、化学屏障和微生物屏障。大量研究发现，肠道菌群是有效发展和维持肠道屏障的关键[15]。Hayes 等[16]发现，定植人类粪便 21 天后的小鼠。与常规小鼠和无菌小鼠相比，肠损伤的易感性降低，说明共生菌群的定植能促进生理屏障结构和功能的适应，促进肠道内环境的稳定。Libertucci 等[17]则发现结肠损伤者体内的失活菌群会促进克罗恩病患者黏膜和内皮层的破坏。故肠道菌群对 NSAIDs 肠病的作用可能体现在其对肠黏膜屏障的维持修复或损伤作用上。

3.1 维持和修复作用 肠道有益菌和有益菌群的多样性对维持肠道黏膜屏障的完整性和稳定性意义重大。肠道有益菌可通过刺激 TLRs 诱导肠上皮细胞增殖，加固肠黏膜上皮紧密连接（tight junction，TJ），抵御大肠埃希菌等病原菌对肠黏膜的侵袭，维护肠屏障功能。Whitfield-Cargile 等[18]发现微生物来源的代谢物吲哚减弱了 NSAIDs 肠病的多种有害作用，包括先天免疫反应介导的炎症反应和吲哚美辛诱导的微生物移位。另有研究发现，经过粪菌移植处理的小鼠，其肠道菌群发生适应性改变，使吲哚美辛对小肠的损伤减少，炎性细胞因子水平降低[19]。此外，最近的研究发现，肠道菌与肠道菌群的代谢产物短链脂肪酸（short-chain fatty acids，SCFAs）可增强十二指肠的黏膜防御屏障。SCFAs 是由盲肠和近端结肠的微生物群对膳食纤维和碳水化合物等营养物质发酵的产物，包括乙酸盐、丙酸盐和丁酸盐等。在十二指肠内胆汁中也有低浓度的 SCFAs 存在，且足以激活游离脂肪酸受体（FFA）通过一系列的信号转导，促进肠分泌细胞释放 5-羟色胺（5-HT）和胰高血糖素样肽-2（GLP-2），刺激十二指肠上皮细胞分泌黏膜保护性 HCO₃⁻，增强十二指肠肠黏膜防御能力[19]，有利于预防和治疗 NSAIDs 肠病。因而在生理状态下，肠道菌群及其代谢产物对肠黏膜屏障的维持和预防 NSAIDs 肠损伤具有重要作用。

3.2 损伤作用 NSAIDs 肠病患者体内的肠道菌群比例失调，肠道微生物紊乱，主要表现为无益菌群的种类减少，而致病菌群增加，尤其是革兰阴性杆菌增加，进一步加重 NSAIDs 肠病的损伤。小肠细菌过度生长（SIBO）是肠道菌群失调的典型表现，定义为空肠内的细菌 >10⁸ CFU/mL，是 NSAIDs 引起严重小肠损伤的重要因素[3]。进一步追究其分子生物学机制，发现 TLR4/NF-κB 信号途径在肠道细菌易位障碍机制中至关重要[20]。NSAIDs 破坏肠黏膜屏障功能时，肠腔内的致病菌侵入到黏膜层，其中革兰阴性杆菌细胞壁的主要活性成分脂多糖（LPS）与肠上皮细胞的 TLR4 受体结合，从而激活下游 MyD88/NF-κB 信号通路和 NLRP3 炎症小体，释放 TNF-α 和 IL-1β 等促炎因子，诱导中性粒细胞浸润到小肠黏膜和黏膜下层，产生细胞毒性物质，导致肠黏膜屏障损伤加重[3]，肠黏膜通透性增加，造成细菌移位和进一步的毒性及炎症反应，最终诱发和加重 NSAIDs 肠病。

4 NSAIDs 肠病基于肠道菌群的预防与治疗

许多研究发现并证明了肠道菌群在 NSAIDs 肠病中的主要作用，以调节肠道菌群为目标的新治疗策略也成为治疗此类肠病的热点和突破点。4.1 益生菌 益生菌治疗各类因肠黏膜屏障功能失调引起的肠病一直是研究的热点。增加有益菌群有益于保护肠黏膜屏障结构和功能，减少阿司匹林诱导的溃疡和其他不良反应均低于安慰剂组[21]。另一项前瞻性随机对照双盲试验发现，益生菌格氏乳杆菌（Lactobacillus gasseri OLL2716）有助于减少阿司匹林诱导的溃疡、糜烂和充血等小肠损伤，并能缓解胃肠道症状[21]。发现和评估各类益生菌对 NSAIDs 肠损伤的修复作用，是未来的研究方向
4.2 SCFAs/GLP-2 靶向药物

SCFAs/β-glucan 是目前治疗胃肠道疾病的新方法。SCFAs 作为肠道细菌的代谢产物，能刺激 GLP-2 的分泌，保护肠黏膜屏障。研究表明，外源性 GLP-2 可预防 NSAIDs 引起的肠病并促进小肠溃疡的愈合。此外，二肽基肽酶 4（DPP4）抑制剂有利于 GLP-2 的释放，仅 DPP4 抑制剂可显著抑制 NSAIDs 诱导的肠病，同时口服氨甲酸与 DPP4 抑制剂可通过 GLP-2 途径促进小肠溃疡的愈合。上述结果表明，外源性 GLP-2 或增强内源性 GLP-2 的分泌并结合 DPP4 抑制剂可以治疗 NSAIDs 肠病[21]。

4.3 抗生素

不合理使用抗生素会导致并加重肠损伤，但部分抗生素对 NSAIDs 肠损伤具有预防作用。这是针对有害菌对肠黏膜屏障的损伤来选择用药。如利福昔明作为一种广谱抗生素，对革兰阳性菌具有高度的抑制作用。Colucci 等[3]评价了利福昔明对双氯芬酸肠病模型大鼠小肠损伤的作用，发现双氯芬酸能引起变形菌门和拟杆菌门细菌的增加，但这种作用是被利福昔明抵消。此外，利福昔明还能够增加被 NSAIDs 消耗的乳杆菌的数量，对双氯芬酸诱导的肠损伤有预防和治疗作用。中药

4.4 中医药

中药对肠道菌群的调节作用和对肠屏障的修复作用已被大量研究证实。如鱼腥草多糖（Holotrichia cordata polysaccharide, HCP）可逆转 HIN 感染引起的肠道菌群的组成变化，显著降低致病性弧菌属（Vibrio）和芽胞杆菌属（Bacillus）细菌的相对丰度，恢复肠道内环境稳定，修复肠黏膜屏障损伤[24]。另有研究评价了灵芝菌丝多糖对肠黏膜屏障的影响，发现灵芝菌丝多糖可以显著下调肠 occludin、NF-kB p65 和分泌免疫球蛋白（IgA）的表达，并增加了盲肠菌群的丰富度，可作为调节肠道屏障的功能剂[25]。Kim 等[26]发现经处理的芦荟凝胶不仅能减轻肠道溃疡的严重程度，而且还能通过改善脱米辛诱导的小鼠小肠损伤模型中黏液层来减少细菌移位，减轻 NSAIDs 诱导的小肠损伤。因此，中药在治疗 NSAIDs 肠病方面有广阔前景，但仍需进一步发掘更多有效与相关疗效的中药。

5 小结与展望

非甾体类抗炎药作为有效的解热镇痛抗炎剂已被广泛应用，但其胃肠道不良反应较大。近年来，NSAIDs 肠病因较高的发病率和严重的并发症受到医学界的广泛关注。肠道菌群与 NSAIDs 相互影响，关系密切，是 NSAIDs 诱导肠损伤的主要机制之一。肠道菌群紊乱可损伤肠黏膜屏障，引起并加重 NSAIDs 诱导的肠损伤，而肠道有益菌群及其代谢产物或菌群的多样性和适应性改变有助于维持和修复肠屏障，改善 NSAIDs 引起的肠黏膜损伤。因此，基于肠道菌群在 NSAIDs 肠损伤中的主要作用，调节肠道菌群为治疗此类肠病的新方案。目前已发现益生菌、SCFAs/GLP-2 靶向药物、利福昔明等抗菌药物和部分中药能预防和缓解 NSAIDs 引起的肠损伤，但研究相对分散且缺乏系统性的阐述，尚未形成一套明确完善的 NSAIDs 肠病的预防和治疗方案，仍需进一步研究和总结。

参考文献


[11] Zhao GQ，Ye FX，Shen W，et al. Study on the characteristic


